Изпъкнал полигон - какво е това, определение и концепция

Изпъкнал многоъгълник е този, чиито вътрешни ъгли са равни на или по-малко от 180º. По този начин всичките му диагонали са във вътрешността на фигурата.

Трябва да се отбележи, че изпъкналият многоъгълник може да има n броя страни и те могат да бъдат с еднаква или различна дължина.

Също така, заслужава да се спомене, че триъгълникът е единственият многоъгълник, който винаги е изпъкнал, тъй като неговите вътрешни ъгли трябва да достигат до 180º.

Противоположността на вдлъбнатия многоъгълник е изпъкнал многоъгълник, където поне един от вътрешните ъгли е по-голям от 180º.

Друг момент, който трябва да се отбележи, е, че многоъгълникът е строго изпъкнал, ако всичките му вътрешни ъгли са по-малки от 180º (както в случая на квадрат).

Елементи на изпъкнал многоъгълник

Елементите на изпъкнал многоъгълник, водещ ни от примера по-долу, който е изпъкнал многоъгълник, са:

  • Върхове: Те са точките, чийто съюз образува страните на фигурата. На изображението по-долу върховете ще бъдат A, B, C, D, E, F, G, H.
  • Страни: Те са сегментите, които се присъединяват към върховете от полигона. На фигурата те ще бъдат AB, BC, CD, DE, EF, FG, GH, HA.
  • Вътрешни ъгли: Арка, която се формира от съединението на страните. В долното изображение те ще бъдат: α, β, δ, γ, ε, ζ, η, θ.
  • Диагонали: Те са сегментите, които свързват всеки връх с някакъв непрекъснат връх. На фигурата по-долу те ще бъдат AC, AD, AE, AF, AG, BD, BE, BF, BG, BH, CF, CG, CE, CH, DF, DG, DH, EG, EH, FH.

Периметър и площ на изпъкнал многоъгълник

За да знаем измерванията на изпъкнал многоъгълник, можем да изчислим площта на периметъра:

  • Периметър (P): Трябва да добавим дължината на всички страни на многоъгълника. Например, на показаната фигура ще бъде: P = AB + BC + CD + DE + EF + FG + GH + HA.
  • Площ (A): Зависи от случая. Например в триъгълник използваме формулата на Херон, където с е полупериметърът, докато a, b и c са дължините на страните на фигурата:

За вдлъбнат многоъгълник, който е неправилен, той може да бъде разделен на триъгълници, както се вижда на фигурата по-долу. Ако знаем мерките на съответните диагонали (BF, BE и CE), намираме площта на всеки триъгълник и правим сумирането.

Междувременно, ако сме изправени пред правилен многоъгълник, с всичките му страни и вътрешни ъгли, равни, следваме следната формула, където n е броят на страните, а L е дължината на всяка страна.

Пример за изпъкнал многоъгълник

Да предположим, че сме изправени пред правилен, изпъкнал седмоъгълник, чиито страни са 22 м. Какъв е периметърът и площта на фигурата?

Периметърът на този изпъкнал и правилен седмоъгълник е 154 метра, а площта е 1758.8136 квадратни метра.

Популярни Публикации

Защо Deutsche Bank се разследва за пране на пари?

Сянката на подозрението виси над Deutsche Bank AG. Има основания да се смята, че германската финансова институция може да участва в голяма операция по пране на пари. Смята се, че Deutsche Bank е участвала в пране на пари в размер на приблизително 230 милиарда долара. За Прочетете повече…

Венецуелският петролен лабиринт

Със сигурност на мнозина е трудно да повярват, че Венецуела, страната с най-големи запаси от нефт, е изправена пред проблем с недостига на бензин. Поразително е също, че Petróleos de Venezuela S.A. (PDSVA), държавната компания, отговаряща за експлоатацията на петрол, не може да намери начин да се разпореди с 50% от продукциятаПрочетете повече…

Брекзит не е решен между отлагането, новия референдум и твърдия Брекзит

Следващият 29 март е крайният срок за Обединеното кралство да напусне Европейския съюз. Тереза ​​Мей все още се опитва да постигне някакъв консенсус с Европа, който да задоволи британския парламент, но без резултат до момента. Лейбърист предлага нов референдум. Ако няма извънредно отлагане, прочетете повече…