Медиана на триъгълник - какво е това, определение и понятие

Съдържание:

Anonim

Медианата на триъгълника е този сегмент, който се свързва с върха на триъгълник със средната точка на противоположната му страна.

Тоест, медианата на триъгълника започва от връх и достига точка от противоположната му страна, която го разделя на две части с еднаква мярка.

Всички триъгълници имат три медиани, както можем да видим на фигурата по-долу, където медианите са AF, BD и CE. Така, например, сегмент AE е равен на EB, докато AD е равен на DC, а BF е равен на FC.

Друг момент, който трябва да се вземе предвид, е, че пресичането на трите медиани на триъгълник се нарича център на тежестта, което на фигурата по-горе е точка О.

Трябва да се отбележи, че всяка медиана може да бъде разделена на две части: Две трети от сегмента съответства на разстоянието между върха и центъра на тежестта, докато останалата част от медианата (една трета) съответства на разстоянието между център на тежестта и средната точка на страната. Тоест, насочвайки ни от изображението по-горе, вярно е, че:

Средна формула

За да изчислите дължината на медианите, можете да следвате следните формули (водещи ни от изображението по-долу)

Забелязваме, че BC = a, AC = b и AB = c. По същия начин медианите са AF = M1, BD = M2 и CE = M3.

Медиана на равнобедрен триъгълник

Ако приемем, че сме изправени пред равнобедрен триъгълник и че a = b:

Както виждаме, M1 е равно на M2

Медиана на правоъгълен триъгълник

В случай на правоъгълен триъгълник, ако приемем, че отсечката BC е хипотенузата, ще трябва да изпълним питагорейската теорема:

И така, мога да изолирам във формулите за медианата, както следва:

Медиана на равностранен триъгълник

Трите медиани на равностранен триъгълник са равни. Като ваша страна a, това би било:

Средно упражнение

Какви са медианите на триъгълник, чиито страни са 10, 4 и 6 метра?